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Abstract

The modified Schneider’s gel slide method is used to monitor the inhibitory effect of 50% methanol extract of Orthosiphon stamineus on the

growth of calcium oxalate crystals. The images of crystals grown in the gel were captured at 1, 2, 3, 4 and 24 h with digital camera and image

analysis was carried out. A total of nine variables relating to size and shape parameters were calculated and six were used for further analysis.

Principal component analysis (PCA) and self-organizing map (SOM) were applied in the visualization of the size and shape distribution of the

produced crystals using the following six variables: area, convex area, aspect ratio, equivalent diameter, roundness and full ratio. The results

indicate that the modified gel slide method with the use of PCA and SOM to reduce the dimensionality of the data allowed an intuitive

presentation of the differences in the studied inhibitors. The decrease in crystal growth for the extract and positive control of sodium citrate was

clearly evident in the principal component scores and also on the location in the SOM. Evidence about the decrease in growth was also provided

by an inhibition index of 0.290 for the extract and 0.255 for the positive control.

D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

There are many theories for the formation of kidney stones.

One of them, the crystallization precipitation theory, implies

that supersaturation of urine leads to precipitation of stone

crystallites. These critical particles become entrapped and

subsequent crystal growth follows. The process of aggregation

and secondary nucleation leads to the formation of large

crystals, which ultimately develop into kidney stones [1].

Another theory, the inhibitory theory, suggests that normal

urine contains substances that inhibit the crystallization of

calcium oxalate. Inhibitors of crystal growth block the growth

of crystals and prevent stone formation [2].

Other than normal drugs, herbals are also commonly used to

treat urinary stones and studies of such local Malaysian

medicinal plants confirm the presence of compounds that

show inhibitory effect in growth of calcium oxalate [3].
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Among the methods to measure the inhibitory activity of

crystals are photometry [4], turbidimetry [5], mixed suspension

mixed product removal MSMPR [6], use of Coulter counter

[7–9] and spectrophotometry [10]. Each of this method has

some advantages but there is no ideal technique. A comparison

of seven different methods to measure crystallization in urine

were reported in a workshop in 1987 and the approach of

crystallization in gels contained in wells of microtitre plate

gave good efficiency and was suggested for basic research and

clinical routine [11]. In a subsequent workshop [12], problems

relating to crystallization measurements were discussed, for

example, Coulter counter analysis was laborious, and optical

techniques involving densitometry approaches required high

crystal density. However, most of above techniques measured

inhibition indirectly and not the effect on single crystals.

Nowadays, the use of image analysis offers a way to

quantify the variations in crystal population. Shape and size

can be characterized subsequent to the visualization of the

crystals by light microscopy. The quantitative description of the

morphology of the produced crystals is with the use of different
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Fig. 1. A diagram of the gel slide.

Table 1

Description of parameters used in the analysis

Parameters Description [14]

Area The apparent area of the crystals

Convex area The area of the polygon circumscribing the feature

formed by tangents to its boundary

Aspect ratio The ratio of particle length divided by its breadth

Equivalent diameter Equivalent circle diameter—i.e. the diameter of a

circle having the same area as the feature

Roundness A shape factor which gives a minimum value o

unity for a circle (round particles get a value of 1

and other particles get values larger than 1)

Fullness ratio A shape factor equal to the square root of the ratio

of area to circumscribed area
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shape and size descriptors. A simple method that gives a rapid

insight into the variations of these descriptors is by using

principal component analysis (PCA) to summarize all the shape

and size parameters as carried out by Bernard-Michel et al.

[13]. Another approach is the use of self-organizing map

(SOM), which was reported by Laitinen and coworkers [14] as

giving a better perception of the distribution compared to PCA.

In this study, a modified Schneider’s gel slide method [4]

was used to study the inhibition of calcium oxalate crystal

growth by 50% methanol extract of leaf of Orthosiphon

stamineus at concentration of 5000 ppm. A positive control of

sodium citrate 10 ppm solution was also used to monitor the

inhibition. A large set of data consisting of size and shape

parameters was produced by image analysis while PCA and

SOM were used to analyze the data. The objective of this work,

other than to monitor the inhibitory effect of the plant extract

on crystal growth, was also to study the feasibility of using

PCA and SOM on image analysis data of modified gel slide

method to monitor the effects on crystals.

2. Methods

2.1. Gel slide method

A solution of 4 ml 1% bacteriological agar was used to coat a

microscopic slide that was partitioned into three equal areas.

Four wells were punched into the agar on each side of the

partition. Two wells were made 1.25 cm apart along the longer

axis while two wells were made 1.0 cm apart along the

perpendicular axis as shown in Fig. 1. Solutions of 10 Al 0.2
M calcium chloride and ammonium oxalate were pipetted into

opposite wells along the longer axis. Solutions of 10 Al from
50% methanol extract or positive control consisting of sodium

citrate were pipetted into the other two holes. The gel slides were

placed in a moist chamber. The crystals formed were monitored

at 1, 2, 3, 4 and 24 h under microscope and images were captured

with a digital camera mounted onto the microscope. The slides

were analyzed in triplicate and six images were captured for each

subsection of blank, positive control and sample.
The optical microscope (Leica MZ6, Leica Microskopie und

Systeme, Germany) was connected to image analysis (IA)

software (Leica Qwin, Leica Imaging Systems, Cambridge,

England), which was used to calculate the size and shape

parameters of the formed calcium oxalate crystals. Nine

parameters of shape and size were measured of which only

six were used for PCA. The image analysis system measures

many very similar kinds of parameters, the ones with high

correlation values were omitted to eliminate factors that do not

bring any additional information to the analysis of the results.

Parameters of length, breadth and perimeter were not used.

The six chosen parameters for further analysis were: area,

convex area, aspect ratio, equivalent diameter, roundness, and

fullness ratio, and they are presented in Table 1 [14]. The size

parameters are area, convex area and equivalent diameter while

the other three represent shape parameters.

2.2. Multivariate analysis

Two methods of multivariate analysis were used to obtain a

description of the various data sets. PCA and SOM were used

to enable the lowering of the dimensionality in the multivariate

data.

2.2.1. Principal component analysis

PCA has been described as the basic workhorse of

multivariate analysis and among the most popular linear

projection method [15]. The measured image analysis data

consisting of mean values of the six parameters for the obtained

crystals were evaluated using PCA employing SPSS program.

PCA is a data visualization method that is useful for observing

groupings within multivariate data. Data is represented in n

dimensional space, where n is the number of variables, and is

reduced into a few principal components, which are descriptive

dimensions that describe the maximum variation within the

data. The principal components can be displayed in a graphical

fashion as a Fscore_ plot. This plot is useful for observing any

groupings or trend in the data set [16].

2.2.2. Self-organizing map

SOM was used to train and visualize the crystal data, which

consisted of values of six parameters measured from the

crystals. The SOM map is available as a Matlab toolbox in a
f

,
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public domain in the Internet [17] and the map was trained

using a Pentium 3 computer. SOM is basically an unsupervised

neural network and has two layers, the input layer and output

layer. The input layer is one-dimensional, whereas the output

layer is usually two-dimensional and often arranged in a way

that each unit or neuron is the neighbor of another six; which is

why they are represented as hexagons. A neighborhood

arrangement is maintained in the SOM algorithm where nearby

map neurons have similar profiles after training. Every neuron

has a parametric reference vector or prototype vector and the

whole input data set in the form of input vectors is presented

for training according to the batch version of Kohonen’s SOM

training algorithm and each observation is projected onto a

winning node [18,19]. The neuron with the prototype vector

having the shortest distance from the presented vector is the

winning node. The vectors of the winner and its neighboring

nodes are modified following the training to represent the input

signals in a topology preserving fashion. Finally, the SOM net

can project data from an n-dimensional space to a usually two-

dimensional grid of neurons and thus facilitate a better

visualization of the data.

2.3. Inhibitory effect

Statistical test of ANOVA by SPSS was carried to determine

if there were statistically significant differences in the area of

the crystals between blank, control and extract. The effects of

the extract and positive control on the in vitro growth of

calcium oxalate crystals were also compared with the blank by

using the inhibition index (I). Absence of inhibition is

indicated by I equals 0, whereas complete inhibition is shown

by I equals 1 [20].

Inhibition index=1� (As/Ac), where As=area of calcium

oxalate crystals in the presence of tested sample and Ac=area

of calcium oxalate for the corresponding blank.

3. Results and discussion

3.1. Image analysis measurements

The monitoring of crystal growth was conducted with

modification to Schneider’s method [4]. In the Schneider’s

method, 3 ml of agar was used to coat the microscopic slide

and technique of photometry, which produced a single

parameter used to monitor the inhibition. In our work, we

used 4 ml of agar and monitored inhibition using image

analysis. However, the major modification was the distance

between the two longitudinal wells that was reduced from 2.5

cm to 1.25 cm in our work. This was to enable comparison of

blank, control and sample on the same slide, which was not

possible in the original method.

The crystal size distribution obtained for the blank, control

of sodium citrate and sample of O. stamineus extract at 1, 2, 3,

4 and 24 h are shown in Fig. 2.

Overall, the size distribution shows that the smallest crystals

are most numerous for all three; blank, control and sample, at

all time periods studied. There is an increase in the size of the
biggest crystals with time, especially more apparent for blank.

This increase in size is less obvious for control and sample

between 1 and 24 h. When the blank, control and sample data

are compared at 24 h, it is apparent that mean size distribution

is higher for blank compared to control and sample. This is

shown by the normal curve that peaks at a higher area value for

the curve for blank when compared to control and sample. The

normal curve also declines more gradually for the blank when

compared to control and sample. The growth of calcium

oxalate crystals with time can also be observed by plotting the

mean area with time as shown by the histogram in Fig. 3. The

decline in mean area for positive control and extract is due to

increase in number of smaller crystals for them at 24

h compared to the preceding period. This could be due to

delayed nucleation of calcium oxalate crystals.

3.2. PCA

The initial step was to check the appropriateness of using

factor analysis method of PCA to summarize all the morpho-

logical variation produced by the image analysis data for the

calcium oxalate crystals. The measure of sampling adequacy

(MSA) is a measure to quantify the degree of intercorrelations

among the variables and is used to justify the use of PCA. This

index ranges from a value of 0 to 1, reaching 1 when each

variable is predicted without error by the other variables. The

PCA analysis for the crystal data gave a MSA value of 0.655

that justified the use of this factor analysis. The Bartlett test of

sphericity, a statistical test for the presence of correlations

among the variables, is another such measure and it also

justified this analysis [21].

PCA was found capable of giving a rapid insight into the

variations of the size and shape variables. The principal

components are determined on the basis of maximum variance

criterion. Each subsequent principal component describes a

maximum of variance that is not modeled by the former

component. According to this, most of the variance is

contained in the first principal component and then in the

second principal component there is more variance than the

third. Generally, the first two components are used and they are

capable of explaining a high percentage of variance in the data.

There are various criteria for the number of factors to extract

and in this analysis the latent root criteria is used. Therefore,

only factors having latent roots or eigenvalues greater than 1

are considered significant and this gave two factors. Another

usual criterion is to obtain the percentage of explained variance

that is greater than 90% and the two factors also fulfilled this

condition [22]. In most cases, rotation of the factor improves

the interpretation by reducing some of the ambiguities that

often accompany initial unrotated factor solution and with this

data, rotation method of varimax with Kaiser normalization

gave a better perspective.

Correlations and importance of the size and shape variables

can be observed from the rotated principal component loadings

as shown in Fig. 4. The size of the loadings for a particular

variable in the considered principal component is a measure of

the importance of that variable or feature for the principal



Fig. 2. The histogram of the crystal size distribution.
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component concerned. It can be noticed that the size

parameters of equivalent diameter, area and convex area are

highly correlated among them in the rotated component plot

and load highly on the first principal component with values of

0.959, 0.949 and 0.925 respectively. The shape parameter of
full ratio loads highly (�0.930) on the second principal

component and has negative correlation to roundness and

aspect ratio. Shape parameters of roundness and aspect ratio are

highly correlated among them and also load highly on the

second component with values of 0.922 and 0.925 respectively.



Fig. 3. The growth profile for blank, control and sample at 1, 2, 3, 4 and 24 h. The error bars indicate the values for S.E.M. Unit in Am2.
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Basically, first principal component is related to size para-

meters and second principal component to shape parameters.

The percentage of explained variance gives an idea of how

much variance can be explained by the use of the principal

component model, which shows how good the model is. The

fraction of total explained variance Se2 is calculated from the

ratio of the sum of d-important eigenvalues (k) and the sum of

all p eigenvalues by the use of:

S2e ¼

Xd

i¼1
k

Xp

i¼1
k

The eigenvalues for the rotated six components in this

analysis are 3.001, 2.858, 0.124, 0.012, 0.004, and 0.000. PCA

indicated that the rotated first component explained about
Fig. 4. Plot of principal component loadings. Area, equivalent diameter and

convex area are size parameters for crystals and load highly on first principal

component, whereas aspect ratio, roundness and fullness ratio are shape

parameters. The magnitude of shape parameters for the second component

show that they load highly on it.
50.0% of the variance in the crystal data. The rotated second

component explained about 47.6% of the variance. The two

components combined explained 97.7% variance in the crystal

data. The two rotated principal components form a plane in the

original image analysis data space and are shown in Fig. 5. The

crystal data for blank at 1, 2, 3, 4 and 24 h shows that there is

an increase in value of first principal component score with

time for blank crystals, which means an increase in size as

principal component one corresponds to size parameters. The

crystal data also show an increase in this score for control and

sample data between 1 and 4 h. However, the first principal

component score at 24 h is much reduced for control and

sample when compared to their respective 4 h data. There is a

great decrease in this score for control and sample when

compared to blank at 24 h. Basically, this means a decrease in

size due to the inhibitory effect on crystal growth by positive

control of sodium citrate and 50% methanolic extract.

There seems to be no corresponding pattern in decrease or

increase for principal component two when comparing for

blank, control and sample at the time periods studied. However,

there is an increase in value for the second component for

blank and sample at the 3 h period.
Fig. 5. Principal component scores for the various test samples. Principal

component 1 is related to size parameters and principal component 2 to shape

parameters. An increase in principal component 1 score corresponds to increase

in size of crystal.
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3.3. SOM

The training data was used to form a matrix by combining

the image analysis data of the crystals from the measurements.

The dimensions of the matrix were 17,017�6. The matrix

included the data points of the six parameters that described the

17,017 crystals measured from the set of blank, control and

sample at 1, 2, 3, 4 and 24 h. The size of the SOM that was

used for the model particles was 30�22. The training of the

net for the model particles took 22 s.

A common visualization technique for trained SOM is

distance matrices; a matrix of distances between neighboring

map nodes. The unified distance matrix or U-matrix repre-

sented the distances of the six parameters in a single map,

whereas separate maps were also used for each parameter.

Both the U-matrix and maps for the six parameters are shown

in Fig. 6. The color of the node indicates the level of the

individual variable on the specific region of the map. The high

values are indicated with red color and low values with violet

color.

It can be noticed that crystals with largest values for size

parameters (area, equivalent diameter and convex area) are

located at the upper region with the maximum values at the

upper right. The crystals with the large values for shape factor

roundness and aspect ratio are located in the upper left with the

maximum values for aspect ratio being located below slightly

compared to the ones for roundness parameter. The crystals

with the lowest values for fullness ratio are located at the top

right side of the map.

Fundamental to the SOM technique is the location of a

given data on the map or the response of the map to an input

data. The location is known as best-matching unit (BMU) and

for a particular crystal data is the map unit with prototype
Fig. 6. The U matrix and the variab
vector closest to the input vector. The organization of the

crystal data on the map for blank, positive control and sample

at 1, 2, 3, 4 and 24 h is shown by locations of the

corresponding BMUs in Fig. 7. It is observed that from

BMU for blank crystals (represented by white hexagons), the

crystal data is clustered at the lower part of the map at 1 h and

with increasing time the data is clustered towards the top parts.

Size of hexagons indicates number of crystals with similar

magnitude for the parameters studied. There are numerous

white hexagons of big size at the bottom at 1 h blank but these

are less in the 24 h blank data. The big white hexagons are

situated in the upper right corresponding to bigger size

parameters for the 24 h blank crystals. Overall, there seems

to be greater number of small crystals at earlier period and a

corresponding increase in crystal size with time. This increase

in size is less obvious for control (yellow) and sample

(magenta) between 1 and 24 h. When the blank, control and

sample data is compared at the period of 24 h, it is apparent that

there are less white hexagons at the bottom compared to yellow

and magenta hexagons. However, there are more white

hexagons at the upper right in comparison to yellow and

magenta hexagons. Taken together, this means that there is a

corresponding decrease in crystal size for control and sample

when compared to blank at 24 h.

Regarding shape parameters there is not much difference in

the blank, control and sample at the time period studied as

found for size parameters. This is apparent as the crystals in the

image were generally of similar type that is mostly calcium

oxalate dihydrate.

The SOM summarizes effectively large sets of particle size

and shape parameters. The advantage of SOM as reported is the

ability to efficiently visualize the distribution of crystals on the

map.
le information for the particles.



Fig. 7. The crystal data on themap for blank (white), positive control of sodium citrate 10 ppm (yellow) and sample of 5000 ppm 50%methanolic extract ofOrthosiphon

stamineus (magenta) at 1, 2, 3, 4 and 24 h. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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3.4. Inhibition of crystal growth

Both PCA and SOM complement each other and further

suggest that there is inhibition due to both extract and positive

control. The principal component loadings in PCA and location

in SOM suggest that size variables have high correlation

between them. This allows us to use the whole area data for

individual crystals for ANOVA by SPSS to determine if the

differences were statistically significant. As the number of

crystals measured in each treatment varied, SPSS calculated

and used a harmonic mean sample (crystals) size of 1092.

Applying the test of Tukey HSD on the blank data showed that
there was a statistically significant difference in the crystal size

for blank except when compared to the adjacent time period.

This can be seen by the groupings of increasing size: a) blank

1 h and blank 2 h, b) blank 2 h and 3 h, c) blank 3 h and blank

4 h and d) blank 4 h and 24 h. More importantly, there were

differences between the positive control and extract at 24 h

when compared to the corresponding blank, indicating

inhibition of growth. The results of the Tukey test by SPSS

were confirmed by using a slight modification of the

calculation as described by Fowler et al. [23]. It showed slight

differences with the results by SPSS but confirmed the growth

of blank crystals with time and also the inhibitory effect of
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extract and positive control on crystal growth at 24 h. The

effect on crystal growth by inhibitors was also suggested in

Schneider’s paper [4] but the photometric analysis was not able

to verify this and furthermore quantification on size of crystals

in images was not done in their work.

The inhibition indexes were calculated using the 24 h data

and the value for the extract was 0.290, whereas for sodium

citrate 10 ppm was 0.255. Sodium citrate is a known inhibitor

of calcium oxalate crystals and its inhibitory effect was also

noted in an earlier study [4].

4. Conclusions

The modified gel Schneider’s method with image analysis

method combined with multivariate techniques of PCA and

SOM was capable of monitoring the calcium oxalate crystal

growth. The use of PCA enabled easy interpretation of the

large data sets produced by reducing the dimension of the data.

The score for principal component one of the rotated data

matrixes is associated with size parameters, whereas the score

for principal component two is associated with shape para-

meters. The principal component one score of the blank,

control and samples at 24 h enabled us to monitor the crystal

inhibition properties of an extract of O. stamineus. A positive

control also gave similar inhibition. SOM was able to

complement PCA by providing a visual perception of the

whole data set as location of the data on the map can be related

to size and shape parameters. Calculation of the inhibition

index by using area data confirmed the inhibitory effect of both

the 5000 ppm 50% methanolic extract of O. stamineus and 10

ppm sodium citrate. Overall, the gel slide method in

combination with image analysis with PCA and SOM can be

used as a screening method for compounds or herbals on

calcium oxalate crystal growth inhibition. Principal component

scores in PCA or location in the SOM shows effects of the

tested samples on growth or on morphology of crystals.
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